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Abstract

Recent work in supervised learning has shown that asurpris-
ingly simple Bayesian classifier with strong assumptions of
independence among features, called naive Bayes, is com-
petitive with state of the art classifiers such as C4.5. This
fact raises the question of whether a classifier with less re-
strictive assumptions can perform even better. In this paper
we examine and evaluate approachesfor inducing classifiers
from data, based on recent results in the theory of learn-
ing Bayesian networks. Bayesian networks are factored
representations of probability distributions that generalize
the naive Bayesclassifier and explicitly represent statements
about independence. Among these approacheswe single out
amethod we call Tree Augmented Naive Bayes (TAN), which
outperforms naive Bayes, yet at the same time maintains the
computational simplicity (no searchinvolved) and robustness
which are characteristic of naive Bayes. We experimentally
tested these approaches using benchmark problems from the
U. C. Irvine repository, and compared them against C4.5,
naive Bayes, and wrapper-based feature selection methods.

1 Introduction

A somewhat simplified statement of the problem of super-
vised learning is asfollows. Given atraining set of labeled
instances of the form (a1,...,a,), ¢, construct a classi-
fier f capable of predicting the value of ¢, given instances
(ay,...,a,,) asinput. Thevariables Ay, ..., A, arecaled
features or attributes, and thevariable C isusualy referred
to as the class variable or label. Thisis a basic problem
in many applications of machine learning, and there are nu-
merous approaches to solve it based on various functional
representations such as decision trees, decision lists, neural
networks, decision-graphs, rules, and many others. One of
the most effective classifiers, in the sense that its predic-
tive performance is competitive with state of the art clas-
sifiers such as C4.5 (Quinlan 1993), is the so-caled naive
Bayesian classifier (or simply naive Bayes) (Langley, Iba,
& Thompson 1992). This classifier learns the conditional
probability of each attribute A; given the labd C' in the
training data. Classification isthen done by applying Bayes
rule to compute the probability of C' given the particular
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instantiation of Ay, ..., A,. This computation is rendered
feasible by making a strong independence assumption: all
the attributes A; are conditionally independent given the
value of the label C'.* The performance of naive Bayesis
somewhat surprising given that thisis clearly an unredlistic
assumption. Consider for example aclassifier for ng
theriskinloan applications. It would beerroneoustoignore
the correl ations between age, education level, and income.
This fact naturally begs the question of whether we can
improve the performance of Bayesian classifiers by avoid-
ing unrealistic assumptions about independence. In order
to effectively tackle this problem we need an appropriate
language and effective machinery to represent and manip-
ulate independences. Bayesian networks (Pearl 1988) pro-
vide both. Bayesian networks are directed acyclic graphs
that allow for efficient and effective representation of the
joint probability distributions over a set of random vari-
ables. Each vertex in the graph represents a random vari-
able, and edges represent direct correlations between the
variables. More precisaly, the network encodes the follow-
ing statements about each random variable: each variable
is independent of its non-descendants in the graph given
the state of its parents. Other independences follow from
these ones. These can be efficiently read from the net-
work structure by means of a simple graph-theoretic crite-
ria. Independences are then expl oited to reduce the number
of parameters needed to characterize a probability distribu-
tion, and to efficiently compute posterior probabilitiesgiven
evidence. Probabilistic parameters are encoded in a set of
tables, onefor each variable, intheform of local conditional
distributions of a variable given its parents. Given thein-
dependences encoded in the network, the joint distribution
can be reconstructed by simply multiplying these tables.
When represented as a Bayesian network, a naive
Bayesian classifier has the simple structure depicted in Fig-
ure 1. This network captures the main assumption behind
the naive Bayes classifier, namely that every attribute (ev-
ery lesf in the network) is independent from the rest of the
attributes given the state of the class variable (the root in
the network). Now that we have the means to represent and

!By independencewe mean probabilistic independence, that is
Aisindependentof B given C' whenever Pr(A| B, C') = Pr(A|C)
for all possiblevaluesof A, B and C.
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Figure 1: The structure of the naive Bayes network.

manipulate independences, the obvious question follows:
can we learn an unrestricted Bayesian network from the
data that when used as a classifier maximizes the prediction
rate?

Learning Bayesian networksfrom dataisarapidly grow-
ing field of research that has seen a great ded of activ-
ity in recent years, see for example (Heckerman 1995;
Heckerman, Geiger, & Chickering 1995; Lam & Bacchus
1994). Thisisaform unsupervised learning inthe sensethat
the learner is not guided by a set of informative examples.
The objectiveisto induce a network (or a set of networks)
that “best describes’ the probability distribution over the
training data. This optimization process isimplemented in
practice using heuristic search techniques to find the best
candidate over the space of possible networks. The search
process relies on a scoring metric that asses the merits of
each candidate network.

We start by examining a straightforward application of
current Bayesian networks techniques. We learn networks
using the MDL metric (Lam & Bacchus 1994) and usethem
for classification. The results, which are analyzed in Sec-
tion 3, are mixed: athough the learned networks perform
significantly better than naive Bayes on some datasets, they
perform worse on others. We trace the reasons for these re-
sultsto the definition of the MDL scoring metric. Roughly
speaking, the problemisthat the MDL scoring metric mea-
sures the “error” of the learned Bayesian network over al
thevariablesinthedomain. Minimizingthiserror, however,
does not necessarily minimize the local “error” in predict-
ing the class variable given the attributes. We argue that
similar problems will occur with other scoring metrics in
the literature.

Inlight of theseresultswe limit our attentionto a class of
network structures that are based on the structure of naive
Bayes, requiring that the class variable be a parent of ev-
ery attribute. This ensures that in the learned network, the
probability Pr(C'| A1, . .., Ap) will take every attributeinto
account. Unlike the naive Bayes structure, however, we
allow additional edges between attributes. These additional
edges capture correlations among the attributes. Note that
the process of adding these edges may involve an heuris-
tic search on a subnetwork. However, there is a restricted
sub-class of these structures, for which we can find the
best candidate in polynomial time. This result, shown by

Geiger (1992), is a consequence of a well-known result by
Chow and Liu (1968) (see dso (Pearl 1988)). This ap-
proach, which we call Tree Augmented Naive Bayes (TAN),
approximates the interactions between attributes using a
tree-structure imposed on the naive Bayes structure. We
note that while this method has been proposed in the liter-
ature, it has never been rigoroudly tested in practice. We
show that TAN maintains the robustness and computational
complexity (the search process is bounded) of naive Bayes,
and at the same time displays better performance in our
experiments. We compare this approach with C4.5, naive
Bayes, and selective naive Bayes, a wrapper-based feature
subset selection method combined with naive Bayes, on a
set of benchmark problems from the U. C. Irvinerepository
(see Section 4). This experiments show that TAN leads to
significant improvement over all of these three approaches.

2 Learning Bayesian Networks

Consider afiniteset U = { X3, ..., X,,} of discreterandom
variables where each variable X; may take on values from
a finite domain. We use capita letters, such as XY, 7,
for variable names and lowercase letters z, y, z to denote
specific values taken by those variables. The set of val-
ues X can atain is denoted as Val(X), the cardindity of
this set is denoted as || X || = |Val(X)|. Sets of variables
are denoted by boldface capital letters X, Y, Z, and assign-
ments of valuesto thevariablesin these setswill be denoted
by boldface lowercase letters x,y, z (we use Val(X) and
[IX|| in the obvious way). Finaly, let P be a joint proba-
bility distribution over the variablesin U, and let X,Y,Z
be subsets of U. X and Y are conditionally independent
given Z if for dl x € Val(X),y € Val(Y),z € Val(Z),
P(x|z,y) = P(x| z) whenever P(y,z) > 0.

A Bayesian network is an annotated directed acyclic
graph that encodes a joint probability distribution of a do-
main composed of a set of random variables. Formally,
a Bayesian network for U is the pair B = (G,0). G
is a directed acyclic graph whose nodes correspond to the
random variables X3, ..., X,,, and whose edges represent
direct dependencies between thevariables. The graph struc-
ture (G encodes the following set of independence assump-
tions: each node X; isindependent of its non-descendants
given its parents in G (Pearl 1988).2 The second compo-
nent of the pair, namely ©, represents the set of param-
eters that quantifies the network. It contains a parameter
glenz, = P(x;|lI,,) for each possible value z; of X;, and
I, of Ilx, (the set of parents of X; in (7). B defines a
uniquejoint probability distribution over U given by:

Pp(Xy,..., Xn) = [[ Pe(Xillix,) = [[ 0x.m, (D)
;=1 i=1

Example2.1: LetU* = {4;,..., A, C}, wherethevari-
ables A,,..., A, are the attributes and C is the class
variable. In the naive Bayes structure the class variable

2Formally there is a notion of minimality associated with this
definition, but we will ignoreit in this paper (see (Pearl 1988)).
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is the root, i.e, Il = 0, and the only parent for each
attribute is the class veriable, i.e, 4, = {C}, for dl
1 < i < n. Using (1) we havethat Pr(4y,...,4,,C) =
Pr(C) - T17-, Pr(4;|C). From the definition of conditional
probablllty We get that Pr(C|A4,..., 4,) = a - Pr(C) -
[Ti_, Pr(4:|C), where o isanormaization constant. This
is the definition of naive Bayes commonly found in the
literature (Langley, Iba, & Thompson 1992). i

The problem of learning aBayesian network can be stated
as follows. Givenatrainingset D = {uy,...,ux} of in-
stances of U, find a network B that best matches /). The
common approach to this problem is to introduce a scor-
ing function that eval uates each network with respect to the
training data, and then to search for the best network. Ingen-
eral, thisoptimization problemisintractable, yet for certain
restricted classes of networks there are efficient algorithms
requiring polynomia time (in the number of variables in
the network). We will indeed take advantage of these effi-
cient algorithmsin Section 4 where we propose a particul ar
extension to naive Bayes. We start by examining the com-
ponents of the scoring function that we will use throughout
the paper.

Let B = ((G,0) be aBayesian network, and let D =
{uy, ..., uy} (where each u; assignsvaluesto al the vari-
ablesinU) be atraining set. The log-likelihood of B given
D isdefined as

L(B|D) = ng (2)

Thisterm measures the Ilkel i hood that the data D was gen-
erated from the model B (namely the candidate Bayesian
network) when we assume that the instances were indepen-
dently sampled. The higher this value is, the closer B is
to modeling the probability distribution in the data D. Let
Pp(-) bethemeasure defined by frequenciesof eventsin D.
Using (1) we can decompose the the log-likelihood accord-
ing to the structure of the network. After some agebraic
manipulations we can easily derive:

LL(BID)=N>_ " Pp(w;, I

towy, Iy,

1090z pm,,) (3)

Now assumethat the structure of the network isfixed. Stan-
dard arguments show that LL(B|D) is maximized when

Orim1,, = Pp(ills,).

Lemma22: Let B = (G, 0) and B’ = (G, ©") such that
0, . = Po(illls,). Then LL(B'|D) > LL(B|D).

Thus, we have aclosed form solutionfor the parametersthat
maximize the log-likelihood for a given network structure.
This is crucial since instead of searching in the space of
Bayesian networks, we only need to search in the smaller
space of network structures, and then fill in the parameters
by computing the appropriate frequencies from the data.
The log-likelihood score, while very simple, is not suit-
able for learning the structure of the network, since it tends
to favor complete graph structures (in which every vari-
able is connected to every other variable). Thisis highly

undesirable since such networks do not provide any useful
representation of the independencesin the learned distribu-
tions. Moreover, the number of parameters in the complete
model is exponential. Most of these parameters will have
extremely high variance and will lead to poor predictions.
This phenomena s called overfitting, since the learned pa-
rameters match thetraining data, but have poor performance
on test data

The two main scoring functions commonly used to learn
Bayesian networks complement the log-likelihood score
with additional termsto addressthis problem. These arethe
Bayesian scoring function (Heckerman, Geiger, & Chicker-
ing 1995), and the one based on minimal description length
(MDL) (Lam & Bacchus 1994). In this paper we con-
centrate on MDL deferring the discussion on the Bayesian
scoring function for the full paper.®

The motivation underlying the MDL method isto find a
compact encoding of the training set 1. We do not repro-
duce the derivation of the the MDL scoring function here,
but merely state it. The interested reader should consult
(Friedman & Goldszmidt 1996; Lam & Bacchus1994). The
MDL score of anetwork B given D, written MDL(B|D) is

MDL(B|D) = %IogN|B|—LL(B|D) (4)
where | B| isthe number of parameters in the network. The
first term simply counts how many bits we need to encode
the specific network B, wherewe store1/2 - log N hitsfor
each parameter in ©. The second term measures how many
bits are needed for the encoded representation of D. Mini-
mizing the M DL score involvestradeoffsbetween thesetwo
factors. Thus, the MDL score of alarger network might be
worse (larger) than that of a smaller network, even though
the former might match the data better. In practice, the
MDL score regulates the number of parameters learned and
helps avoid overfitting of the training data. Note that the
first term does not depend on the actual parametersin B, but
only on the graph structure. Thus, for a fixed the network
structure, we minimize the MDL score by maximizing the
LL score using Lemma 2.2.

It is important to note that learning based on the MDL
score is asymptotically correct: with probability 1 the
learned distribution converges to the underlying distribu-
tion asthe number of samplesincreases (Heckerman 1995).

Regarding the search process, in this paper we will rely
on agreedy strategy for the obvious computational reasons.
This procedure starts with the empty network and succes-
sively applieslocal operations that maximally improve the
score and until alocal minimaisfound. The operationsap-
plied by the search procedure are: arc addition, arc deletion
and arc reversal. Inthefull paper we describe results using
other search methods (although the methods we examined
so far did not lead to significant improvements.)

3 Bayesian Networksas Classifiers

3There are some well-known connections between these two
proposals (Heckerman 1995).
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Figure 2: Error curves comparing unsupervised Bayesian
networks (solidline) to naive Bayes (dashed line). The hor-
izontal axis lists the datasets, which are sorted so that the
curves cross only once. The vertica axis measures fraction
of test instances that were misclassified (i.e., prediction er-
rors). Thus, the smaller the value, the better the accuracy.
Each data point is annotated by a 90% confidence interval .

Using the methods just described we can induce a Bayesian
network from the data and then use the resulting model asa
classifier. Thelearned network representsan approximation
to the probability distribution governing the domain (given
the assumptionthat theinstances areindependently sampled
form asingledistribution). Given enough samples, thiswill
be a close approximation Thus, we can use this network
to compute the probability of C' given the values of the
attributes. The predicted class ¢, given a set of attributes
ai, ..., a, is simply the class that attains the maximum
posterior Pg(clas, ..., an), Where Pp is the probability
distribution represented by the Bayesian network B.

It isimportant to note that thisprocedure is unsupervised
in the sensethat thelearning procedure does not distinguish
the class variable from other attributes. Thus, we do not
inform the procedure that the evaluation of the learned net-
work will be done by measuring the predictive accuracy
with respect to the class variable.

From the outset there is an obvious problem. Learning
unrestricted Bayesian networks is an intractable problem.
Even thoughin practice weresort to greedy heuristic search,
this procedure is often expensive. In particular, it is more
expensive than learning the naive Bayesian classifier which
can be donein linear time.

Still, we may be willing to invest the extra effort re-
quired in learning a (unrestricted) Bayesian network if the
prediction accuracy of the resulting classifier outperforms
that of the naive Bayesian classifier. As our first experi-
ment shows, Figure 2, thisis not always the case. In this
experiment we compared the predi ctiveaccuracy of classifi-
cation using Bayesian networkslearned in an unsupervised
fashion, versus that of the naive Bayesian classifier. We
run thisexperiment on 22 datasets, 20 of which arefromthe
U. C. Irvinerepository (Murphy & Aha1995). Appendix A
describesin detail the experimental setup, eval uation meth-

ods, and results (Table 1).

Ascan be seen from Figure 2 the classifier based on unsu-
pervised networks performed significantly better than naive
Bayes on 6 datasets, and performed significantly worse on 6
datasets. A quick examination of the datasets revelsthat all
the datasets where unsupervised networks performed poorly
contain more than 15 attributes.

It isinteresting to examine thetwo datasets where the un-
supervised networks performed worst (compared to naive
Bayes): “soybean-large’ (with 35 attributes) and “satim-
age’ (with 36 attributes). For both these datasets, the size of
the class’ Markov blanket in the networksis rather small—
less than 5 attributes.  The relevance of thisis that pre-
diction using a Bayesian network examines only the values
of attributes in the class variable’s Markov blanket.* The
fact that for both these datasets the Markov blanket of the
classvariableisso small indicatesthat for theMDL metric,
the “cost” (in terms of additional parameters) of enlarging
the Markov blanket is not worth the tradeoff in overall ac-
curacy. Moreover, we note that in al of these experiments
the networks found by the unsupervised learning routine
had better MDL score than the naive Bayes network. This
suggest that the root of the problem is the scoring metric—
a network with a better score is not necessarily a better
classifier.

To understand this problem in detail we re-examine the
MDL score. Recall that thelikelihoodtermin (4) isthe one
that measures the quality of thelearned model. Also recall
that D = {uy, ..., uy } isthetrainingset. Inaclassification
task each u; is a tuple of the form (a}, ..., a%,¢') that
assigns valuesto the attributes A, . . ., 4,, and to the class
variable C'. Using the chain rule we can rewrite the log-
likelihood function (2) as:

N
LL(BID) = > logPs(c'la, ... db)+
i=1
N . .
> log Py(as, ..., dl) (5)
i=1

The first term in this equation measures how well B esti-
mates the probability of the class given the attributes. The
second term measures how well B estimates the joint dis-
tribution of the attributes. Since the classification is deter-
mined by Pp(C|A1, ..., An) only thefirst term is related
to the score of the network as a classifier (i.e, itsprediction
accuracy). Unfortunately, thistermisdominated by the sec-
ond term when there are many attributes. Asn growslarger,
the probability of each particular assignment to Ay, ..., A,
becomes smaller, since the number of possible assignments
grows exponentialy in n. Thus, we expect the terms of
theform Pp(As, ..., A,) toyield smaller vadues which in
turn will increase the value of the log function. However,

“More precisely, for afixed network structurethe Markov blan-
ket of avariable X (Pearl 1988) consistsof X’s parents, X's chil-
dren, and parents of X's children in G. This set has the property
that conditioned on X’s Markov blanket, X is independent of all
other variables in the network.
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Figure 3: A TAN model learned for the dataset “pima’.

a the same time, the conditiona probability of the class
will remain more of less the same. Thisimpliesthat arela
tively big error in the first term will not reflect in the MDL
score. Thus, asindicated by our experimental results, using
anon-speciaized scoring metric for learning an unrestricted
Bayesian network may result in apoor classifier when there
are many attributes.®

A straightforward approach to dealing with this problem
would beto specialize the scoring metric (MDL in thiscase)
for the classification task. We can easily do so by restricting
the log-likelihood to thefirst term of (5). Formally, let the
conditional log-likelihood of a Bayesian network B given
dataset D be CLL(B|D) = S_N, log Pp(C| A4, ..., AL).
A similar modification to Bayesian scoring metricin (Heck-
erman, Geiger, & Chickering 1995) isequally easy to define.
The problem with applying these conditional scoring met-
ricsin practiceisthat they do not decompose over the struc-
ture of the network, i.e., we do not have an analogue of (3).
Asaconsequenceitisno longer truethat setting the param-

etersf,,m, = Pp(;|11,,) maximizesthescorefor afixed

network structure.® We do not know, at this stage, whether
there is a computationa effective procedure to find the pa-
rameter val ues that maximize thistype of conditional score.
In fact, as reported by Geiger (1992), previous attempts to
defining such conditional scores resulted in unredlistic and
sometimes contradictory assumptions.

4 Learning Restricted Networksfor
Classifiers
In light of this discussion we examine a different ap-
proach. We limit our attention to a class of network struc-
tures that are based on the naive Bayes structure. As in
naive Bayes, we require that the class variable be a parent
of every atribute. Thisensuresthat, inthelearned network,
the probability P(C'|Aq, ..., A,) will take every attribute
into account, rather than ashallow set of neighboring nodes.

5In the full paper we show that the same problem occur in the
Bayesian scoring metric.

5We remark that decomposition still holdsfor arestricted class
of structures—essentially these where C' does not have any chil-
dren. However, these structures are usually not useful for classifi-
cation.

Glucose

In order to improvethe performance of a classifier based on
naive Bayes we propose to augment the naive Bayes struc-
turewith “correlation” edges among the attributes. We call
these structures augmented naive Bayes.

In an the augmented structure an edge from A4; to A; im-
pliesthat the two attributesare no longer independent given
theclass variable. Inthiscase theinfluence of 4; ontheas
sessment of class variable also depends on the value of A;.
Thus, in Figure 3, the influence of the attribute “ Glucose”
on the class C' depends on the value of “Insulin”, whilein
naive Bayes the influence of each on the class variable is
independent of other’s. Thus, avalue of “Glucose’ that is
surprising (i.e., P(g|c) islow), may be unsurprising if the
value of its correlated attribute, “Insulin,” is aso unlikely
(i.e, P(g|c, %) ishigh). Inthissituation, the naive Bayesian
classifier will over-penalizethe probability of the class vari-
able (by considering two unlikely observations), while the
network in Figure 3 will not.

Adding the best augment naive Bayes structureis an in-
tractable problem. To seethis, notethisessentially involves
learning a network structure over the attribute set. How-
ever, by imposing restrictions on the form of the allowed
interactions, we can learn the correlations quite efficiently.

A treeaugmented naive Bayes (TAN) modd, is a
Bayesian network where Tl = @, and 114, contains C'
and at most one other attribute. Thus, each attribute can
have one correlation edge pointing to it. Aswe now show,
we can exploit this restriction on the number of correla
tion edges to learn TAN models efficiently. This class of
models was previoudly proposed by Geiger (1992), using
a well-known method by Chow and Liu (1968), for learn-
ing tree-like Bayesian networks (see also (Pearl 1988, pp.
387-390)).’

We start by reviewing Chow and Liu’sresult on learning
trees. A directed acyclic graph is a tree if Il x, contains
exactly one parent for al X;, except for one variable that
has no parents(thisvariableisreferred to astheroot). Chow
and Liu show that thereisasimple procedurethat constructs
the maximal log-probability tree. Let n be the number of
randomvariablesand N bethenumber of traininginstances.
Then

Theorem 4.1: (Chow & Lui 1968) Thereis a procedure of
time complexity O(n?- N), that constructsthetree structure
Br that maximizes LL( By |D).

The procedure of Chow and Liu can be summarized as
follows.

1. Compute the mutual information I(X;;X;) =

PD(x,,xj)
> a; Po(wi,z)) 190 5. o oBo e
of variables, i # j.

2. Build a complete undirected graph in which the vertices
are the variables in U. Annotate the weight of an edge
connecting X; to X; by I(X;; X;).

3. Build a maximum weighted spanning tree of this graph
(Cormen, Leiserson, & Rivest 1990).

between each pair

"These structures are called “Bayesian conditional trees’ by
Geiger.
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Figure4: Error curvescomparing smoothed TAN (solid line)
to naive Bayes (dashed line).
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Figure5: Error curvescomparing smoothed TAN (solid line)
to C4.5 (dashed line).

4. Transform the resulting undirected tree to a directed one
by choosing aroot variable and setting the direction of all
edgesto be outward fromiit. (The choice of root variable
does not change the log-likelihood of the network.)

The first step has complexity of O(n?2- N') and thethird step
has complexity of O(n?logn). Since we usually have that
N > logn, we get the resulting complexity.

This result can be adapted to learn the maximum likeli-
hood TAN structure.

Theorem 4.2: (Geiger 1992) There is a procedure of time
complexity O(n? - N') that constructsthe TAN structure By
that maximize LL( Bz |D).

The procedure is very similar to the procedure de-
scribed above when applied to the attributes Ay, ..., A,.
The only change is in the choice of weights. In-
stead of teking I(A4;;A4;), we take the condi-
tional mutual information given C', I(A;;A;|C) =

Za,,aj,cPD(az,a], c)log Pota, C)PD(G Bk Roughly

speaking, thismeasures thegain inlog-likelihood of adding
A; asaparent of A; when C' isalready aparent.
Thereisone more consideration. To learn the parameters

in the network we estimate conditional frequencies of the
form Pp(X|Ix). Thisis done by partitioning the train-
ing data according to the possible values of 11 x and then
computing the frequency of X in each partition. A prob-
lem surfaces when some of these partitions contain very
few instances. Inthese small partitionsour estimate of the
conditiona probability is unreliable. This problem is not
serious for the naive Bayes classifier since it partitionsthe
dataaccording tothe classvariable, and usually al values of
the class variables are adequately represented in thetraining
data In TAN models however, for each attribute we asses
the conditional probability given the class variable and an-
other attribute. This means that the number of partitionsis
at least twiceaslarge. Thus, itisnot surprisingto encounter
unreliable estimates, especialy in small datasets.

To deal with this problem we introduce a smoothing op-
eration on the parameters learned in TAN models. This
operation takes every estimated parameter ¢, and bi-
ases it toward the observed marginal frequency of X,
Pp(x). Formaly, we let the new parameter 6° (z|II,) =
o - PD(J:|Hx) +(1- oz)pp(x), taking o = #F(IH;)_S,
where s isthe smoothing parameter, which isusualy quite
small (in al the experiments we choose s = 5).8 It iseasy
to see that this operation biases the learned parametersin a
manner that depends on our confidence level as expressed
by s: themoreinstanceswe haveinthepartitionfromwhich
we compute the parameter, the less bias is applied. If the
number of instancesthat with aparticular parents' value as-
signment is significant, than the bias essentially disappears.
On the other hand, if the number of instances with the a
particular parents’ value assignment is small, then the bias
dominates. We note that this operation is performed after
the structure of the TAN model are determined. Thus, the
smoothed model has exactly the same qualitative structure
as the origina model, but with different numerical param-
eters. In our experiments comparing the prediction error
of smoothed TAN to that of unsmoothed TAN, we observed
that smoothed TAN performs at |east as well as TAN and oc-
casionally significantly outperforms TAN (see for example
the results for “soybean-large’, “ segment”, and “lymphog-
raphy” in Table 1). From now on we will assume that the
version of TAN uses the smoothing operator unless noted
otherwise.

Figure 4 compares the prediction error of the TAN classi-
fier to that of naive Bayes. Ascan be seen, the performance
of the TAN classifier dominates that of naive Bayes® This
result supports our hypothesis that by relaxing the strong
independence assumptions made by naive Bayes we can
indeed learn better classifiers.

8In statistical terms, we are essentially applying a Dirichlet
prior on € xrr,, with mean expected value Pp(X) and equivalent
sample size s. We note that this use of Dirichlet priors is related
to the class of Dirichlet priors described in (Heckerman, Geiger,
& Chickering 1995).

%In our experiments we also tried smoothed version of naive
Bayes. This did not lead to significant improvement over the
unsmoothed naive Bayes.
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Finally, we aso compared TAN to C4.5 (Quinlan 1993),
a state of the art decision-tree learning system, and to the
selective naive Bayesian classifier (Langley & Sage 1994,
John, Kohavi, & Pfleger 1995). Thelater approach searches
for the subset of attributes over which naive Bayes has
the best performance. The results displayed in Figure 5
and Table 1, show that TAN is quite competitive with both
approachesand can lead to big improvementsin many cases.

5 Concluding Remarks

This paper makes two important contributions. The first
one is the analysis of unsupervised learning of Bayesian
networks for classification tasks. We show that the scoring
metrics used in learning unsupervised Bayesian networks
do not necessarily optimize the performance of the learned
networksin classification. Our analysis suggests a possible
class of scoring metrics that are suited for thistask. These
metrics appear to be computationally intractable. We plan
to explore effective approaches to learning with approxi-
mations of these scores. The second contribution is the
experimenta validation of tree augmented naive Bayesian
classifiers, TAN. This approach was introduced by Geiger
(1992), yet was not extensively tested and as a conseguence
has received littlerecognition in the machine learning com-
munity. This classification method has attractive computa-
tional properties, whileat the sametime, as our experimental
results show, it performs competitively with reported state
of the art classifiers.

In spite of these advantages, it is clear that in some sit-
uations, it would be useful to model correlations among
attributes that cannot be captured by a tree structure. This
will be significant when thereisa sufficient number of train-
ing instances to robustly estimate higher-order conditional
probabilities. Thus, it isinteresting to examine the problem
of learning (unrestricted) augmented naive Bayes networks.
Inaninitia experiment we attempted to learn such networks
using the MDL score, where we restricted the search pro-
cedure to examine only networks that contained the naive
Bayes backbone. The results were somewhat disappoint-
ing, since the MDL score was reluctant to add more than a
few correlation arcs to the naive Bayes backbone. Thisis,
again, aconsequence of thefact that the scoring metricisnot
geared for classification. An alternative approach might use
a cross-validation scheme to eval uate each candidate while
searching for the best correlation edges. Such a procedure,
however, is computationally expensive.

We are certainly not the first to try and improve naive
Bayes by adding correlations among attributes. For ex-
ample, Pazzani (1995) suggests a procedure that replaces,
in a greedy manner, pairs of ettributes A;, A;, with a new
attribute that represents the cross-product of 4; and A;.
This processes ensures that paired attributes influence the
class variable in a correlated manner. It is easy to see that
the resulting classifier is equivalent to an augmented naive
Bayes network where the attributes in each “cluster” are
fully interconnected. Note that including many attributesin
a single cluster may result in overfitting problems. On the
other hand, attributesin different clustersremain (condition-

ally) independent of each other. This shortcoming does not
occur in TAN classifiers. Another example is the work by
Provan and Singh (1995), in which awrapper-based feature
subset selection isapplied to an unsupervised Bayesian net-
work learning routine. This procedure is computationally
intensive (it involves repeated calls to a Bayesian network
learning procedure) and the reported results indicate only a
dlight improvement over the selective naive Bayesian clas-
sifier.

The attractiveness of the tree-augmented naive Bayesian
classifier is that it embodies a good tradeoff between the
quality of the approximation of correlations among at-
tributes, and the computational complexity in the learning
stage. Moreover, the learning procedure is guaranteed to
find the optimal TAN structure. Asour experimental results
show this procedure performs well in practice. Therefore
we propose TAN as aworthwhiletool for the machinelearn-
ing community.
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A Experimental Methodology and Results

We run our experiments on the 22 datasets listed in Table 1.
All of the datasets are from the U. C. Irvine repository
(Murphy & Aha 1995), with the exception of “mofn-3-7-
10" and “corral”. Thesetwo artificial datasets were used for
the evaluation of feature subset sel ection methods by (John,
Kohavi, & Pfleger 1995). All these datasets are accessible
a the MLC++- ftp site.

The accuracy of each classifier isbased on the percentage
of successful predictionson thetest setsof each dataset. We
estimate the prediction accuracy for each classifier as well
as the variance of this accuracy using the MLC++ system
(Kohavi et al. 1994). Accuracy was evaluated using the
holdout method for the larger datasets, and using 5-fold
cross validation (using the methods described in (Kohavi
1995)) for the smaller ones. Since we do not dedl, at the
current time, with missing data we had removed instances
with missing values from the datasets. Currently we aso do
not handle continuous attributes. Instead, in each invoca
tion of the learning routine, the dataset was pre-discretized
using a variant of the method of (Fayyad & Irani 1993)
using only the training data, in the manner described in
(Dougherty, Kohavi, & Sahami 1995). These preprocess-
ing stages where carried out by the MLC++ system. We
note that experiments with the various learning procedures
were carried out on exactly the same training setsand eval u-
ated on the same test sets. In particular, the cross-validation
foldswherethesamefor all theexperiments on each dataset.
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Table 1: Experimenta results

Dataset # Attributes # Instances Accuracy
Train Tes| NBC Unsup TAN TAN® C45 SNBC
1  austraian 14 690 CV-5 | 86.23+-1.10 86.23+-1.76 81.30+-1.06 84.20+-1.24 85.65+-1.82  86.67+-1.81
2 breast 10 683 CV-5 | 97.36+-0.50 96.92+-0.63 95.75+-1.25  96.92+-0.67 94.73+-0.59  96.19+-0.63
3  chess 36 2130 1066 | 87.15+-1.03 9559+-0.63 92.40+-0.81 92.31+-0.82 99.53+-0.21  94.28+-0.71
4 cleve 13 296 CV-5 | 82.76+-1.27 81.39+1.82 79.06+-0.65 81.76+-0.33 73.31+-0.63 78.06+-2.41
5 corrd 6 128 CV-5 | 85.88+-325 97.60+-240 95.32+2.26 96.06+-251 97.69+-2.31 83.57+-3.15
6 crx 15 653 CV-5 | 86.22+-1.14 85.60+-0.17 83.77+-1.34 85.76+-1.16 86.22+-0.58 85.92+-1.08
7  diabetes 8 768 CV-5 | 74.48+0.89 75.39+0.29 75.13+098 7552+1.11 76.04+-0.85 76.04+-0.83
8 flare 10 1066 CV-5 | 79.46+-1.11 82.74+-190 8274+-160 8227+1.86 8255+-1.75 83.40+-1.67
9 german 20 1000 CV-5 | 74.70+-1.33 72.30+-157 7220+-154 73.10+-154 7220+-123 73.70+-2.02
10  heart 13 270 CV-5 | 81.48+3.26 82.22+246 8296+251 83.33+-248 81.11+-3.77 81.85+-2.83
11 hepatitis 19 80 CV-5 | 91.25+-153 91.25+-4.68 85.00+-2.50 91.25+-250 86.25+-4.15  90.00+-4.24
12 letter 16 15000 5000 | 74.96+-0.61  75.02+-0.61 83.44+-053 85.86+-049 77.70+-059  75.36+-0.61
13 lymphography 18 148 CV-5 | 79.72+-1.10 75.03+-158 66.87+-3.37 85.03+-3.09 77.03+-1.21  77.72+-2.46
14 mofn-3-7-10 10 300 1024 | 86.43+1.07 85.94+109 91.70+-0.86 91.11+-0.89 85.55+-1.10 87.50+-1.03
15 pima 8 768 CV-5 | 7551+-1.63 75.00+-1.22 75.13+136  75.52+-1.27 75.13+152 74.86+-2.61
16  satimage 36 4435 2000 | 81.75+-0.86 59.20+-1.10 77.55+-0.93 87.20+-0.75 83.15+-0.84  82.05+-0.86
17 segment 19 1540 770 | 91.17+1.02 9351+0.89 85.32+-128 9558+-0.74 93.64+-0.88  93.25+-0.90
18  shuttle-small 9 3866 1934 | 98.34+-0.29 99.17+-021  98.86+-0.24 99.53+-0.15 99.17+-0.21  99.28+-0.19
19  soybean-large 35 562 CV-5 | 91.29+-0.98 58.54+-4.84 5817+-1.43 9217+-1.02 92.00+-1.11  92.89+-1.01
20  vehicle 18 846 CV-5 | 58.28+1.79 61.00+-2.02 67.86+-2.92 69.63+-2.11 69.74+-152 61.36+-2.33
21  vote 16 435 CV-5 | 90.34+-0.86 94.94+-046  89.20+-1.61 93.56+-0.28  95.63+-0.43  94.71+-0.59
22 waveform-21 21 300 4700 | 77.89+-0.61 69.45+0.67 75.38+-0.63 78.38+-0.60 74.70+-0.63  76.53+-0.62

Finally, in Table 1 we summarize the accuracies of thesix
learning procedures we discussed in this paper: NBC—the
naive Bayesian classifier; Unsup—unsupervised Bayesian
networks learned using the MDL score; TAN—TAN net-
workslearned according to Theorem 4.2; TAN®—smoothed
TAN networks; C4.5-the decision-tree classifier of (Quin-
lan 1993); SNBC—thesdlective naive Bayesian classifier, a
wrapper-based feature sel ection applied to naive Bayes, us-
ing the implementation of (John, Kohavi, & Pfleger 1995).
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