
www.manaraa.com

Building Classifiers using Bayesian Networks

Nir Friedman
Stanford University

Dept. of Computer Science
Gates Building 1A

Stanford, CA 94305-9010
nir@cs.stanford.edu

Moises Goldszmidt�
Rockwell Science Center
444 High St., Suite 400
Palo Alto, CA 94301

moises@rpal.rockwell.com

Abstract

Recent work in supervised learning has shown that a surpris-
ingly simple Bayesian classifier with strong assumptions of
independence among features, called naive Bayes, is com-
petitive with state of the art classifiers such as C4.5. This
fact raises the question of whether a classifier with less re-
strictive assumptions can perform even better. In this paper
we examine and evaluate approaches for inducing classifiers
from data, based on recent results in the theory of learn-
ing Bayesian networks. Bayesian networks are factored
representations of probability distributions that generalize
the naive Bayes classifier and explicitly represent statements
about independence. Among these approaches we single out
a method we call Tree Augmented Naive Bayes (TAN), which
outperforms naive Bayes, yet at the same time maintains the
computational simplicity (no search involved) and robustness
which are characteristic of naive Bayes. We experimentally
tested these approaches using benchmark problems from the
U. C. Irvine repository, and compared them against C4.5,
naive Bayes, and wrapper-based feature selection methods.

1 Introduction
A somewhat simplified statement of the problem of super-
vised learning is as follows. Given a training set of labeled
instances of the form ha1; : : : ; ani; c, construct a classi-
fier f capable of predicting the value of c, given instancesha0

1; : : : ; a0ni as input. The variables A1; : : : ; An are called
features or attributes, and the variable C is usually referred
to as the class variable or label. This is a basic problem
in many applications of machine learning, and there are nu-
merous approaches to solve it based on various functional
representations such as decision trees, decision lists, neural
networks, decision-graphs, rules, and many others. One of
the most effective classifiers, in the sense that its predic-
tive performance is competitive with state of the art clas-
sifiers such as C4.5 (Quinlan 1993), is the so-called naive
Bayesian classifier (or simply naive Bayes) (Langley, Iba,
& Thompson 1992). This classifier learns the conditional
probability of each attribute Ai given the label C in the
training data. Classification is then done by applying Bayes
rule to compute the probability of C given the particular�Current address: SRI International, 333 Ravenswood Way,
Menlo Park, CA 94025, moises@erg.sri.com

instantiation of A1; : : : ; An. This computation is rendered
feasible by making a strong independence assumption: all
the attributes Ai are conditionally independent given the
value of the label C.1 The performance of naive Bayes is
somewhat surprising given that this is clearly an unrealistic
assumption. Consider for example a classifier for assessing
the risk in loan applications. It would be erroneous to ignore
the correlations between age, education level, and income.

This fact naturally begs the question of whether we can
improve the performance of Bayesian classifiers by avoid-
ing unrealistic assumptions about independence. In order
to effectively tackle this problem we need an appropriate
language and effective machinery to represent and manip-
ulate independences. Bayesian networks (Pearl 1988) pro-
vide both. Bayesian networks are directed acyclic graphs
that allow for efficient and effective representation of the
joint probability distributions over a set of random vari-
ables. Each vertex in the graph represents a random vari-
able, and edges represent direct correlations between the
variables. More precisely, the network encodes the follow-
ing statements about each random variable: each variable
is independent of its non-descendants in the graph given
the state of its parents. Other independences follow from
these ones. These can be efficiently read from the net-
work structure by means of a simple graph-theoretic crite-
ria. Independences are then exploited to reduce the number
of parameters needed to characterize a probability distribu-
tion, and to efficiently compute posterior probabilitiesgiven
evidence. Probabilistic parameters are encoded in a set of
tables, one for each variable, in the form of local conditional
distributions of a variable given its parents. Given the in-
dependences encoded in the network, the joint distribution
can be reconstructed by simply multiplying these tables.

When represented as a Bayesian network, a naive
Bayesian classifier has the simple structure depicted in Fig-
ure 1. This network captures the main assumption behind
the naive Bayes classifier, namely that every attribute (ev-
ery leaf in the network) is independent from the rest of the
attributes given the state of the class variable (the root in
the network). Now that we have the means to represent and

1By independence we mean probabilistic independence, that isA is independentofB givenC whenever Pr(AjB;C) = Pr(AjC)
for all possible values of A;B and C .



www.manaraa.com

dd d������ ����������� ���� lllllA1 A2 AnC
Figure 1: The structure of the naive Bayes network.

manipulate independences, the obvious question follows:
can we learn an unrestricted Bayesian network from the
data that when used as a classifier maximizes the prediction
rate?

Learning Bayesian networks from data is a rapidly grow-
ing field of research that has seen a great deal of activ-
ity in recent years, see for example (Heckerman 1995;
Heckerman, Geiger, & Chickering 1995; Lam & Bacchus
1994). This is a form unsupervised learning in the sense that
the learner is not guided by a set of informative examples.
The objective is to induce a network (or a set of networks)
that “best describes” the probability distribution over the
training data. This optimization process is implemented in
practice using heuristic search techniques to find the best
candidate over the space of possible networks. The search
process relies on a scoring metric that asses the merits of
each candidate network.

We start by examining a straightforward application of
current Bayesian networks techniques. We learn networks
using the MDL metric (Lam & Bacchus 1994) and use them
for classification. The results, which are analyzed in Sec-
tion 3, are mixed: although the learned networks perform
significantly better than naive Bayes on some datasets, they
perform worse on others. We trace the reasons for these re-
sults to the definition of the MDL scoring metric. Roughly
speaking, the problem is that the MDL scoring metric mea-
sures the “error” of the learned Bayesian network over all
the variables in the domain. Minimizing this error, however,
does not necessarily minimize the local “error” in predict-
ing the class variable given the attributes. We argue that
similar problems will occur with other scoring metrics in
the literature.

In light of these results we limit our attention to a class of
network structures that are based on the structure of naive
Bayes, requiring that the class variable be a parent of ev-
ery attribute. This ensures that in the learned network, the
probability Pr(CjA1; : : : ; An) will take every attribute into
account. Unlike the naive Bayes structure, however, we
allow additional edges between attributes. These additional
edges capture correlations among the attributes. Note that
the process of adding these edges may involve an heuris-
tic search on a subnetwork. However, there is a restricted
sub-class of these structures, for which we can find the
best candidate in polynomial time. This result, shown by

Geiger (1992), is a consequence of a well-known result by
Chow and Liu (1968) (see also (Pearl 1988)). This ap-
proach, which we call Tree Augmented Naive Bayes (TAN),
approximates the interactions between attributes using a
tree-structure imposed on the naive Bayes structure. We
note that while this method has been proposed in the liter-
ature, it has never been rigorously tested in practice. We
show that TAN maintains the robustness and computational
complexity (the search process is bounded) of naive Bayes,
and at the same time displays better performance in our
experiments. We compare this approach with C4.5, naive
Bayes, and selective naive Bayes, a wrapper-based feature
subset selection method combined with naive Bayes, on a
set of benchmark problems from the U. C. Irvine repository
(see Section 4). This experiments show that TAN leads to
significant improvement over all of these three approaches.

2 Learning Bayesian Networks
Consider a finite set U = fX1; : : : ; Xng of discrete random
variables where each variable Xi may take on values from
a finite domain. We use capital letters, such as X;Y; Z,
for variable names and lowercase letters x; y; z to denote
specific values taken by those variables. The set of val-
ues X can attain is denoted as Val(X), the cardinality of
this set is denoted as jjXjj = jVal(X)j. Sets of variables
are denoted by boldface capital letters X;Y;Z, and assign-
ments of values to the variables in these sets will be denoted
by boldface lowercase letters x; y; z (we use Val(X) andjjXjj in the obvious way). Finally, let P be a joint proba-
bility distribution over the variables in U, and let X;Y;Z
be subsets of U. X and Y are conditionally independent
given Z if for all x 2 Val(X); y 2 Val(Y); z 2 Val(Z),P (x j z; y) = P (x j z) whenever P (y; z) > 0.

A Bayesian network is an annotated directed acyclic
graph that encodes a joint probability distribution of a do-
main composed of a set of random variables. Formally,
a Bayesian network for U is the pair B = hG;�i. G
is a directed acyclic graph whose nodes correspond to the
random variables X1; : : : ; Xn, and whose edges represent
direct dependencies between the variables. The graph struc-
ture G encodes the following set of independence assump-
tions: each node Xi is independent of its non-descendants
given its parents in G (Pearl 1988).2 The second compo-
nent of the pair, namely �, represents the set of param-
eters that quantifies the network. It contains a parameter�xi j�xi = P (xij�xi) for each possible value xi of Xi, and�xi of �Xi (the set of parents of Xi in G). B defines a
unique joint probability distribution over U given by:PB(X1; : : : ; Xn) = nYi=1

PB(Xij�Xi) = nYi=1

�Xij�Xi (1)

Example 2.1: Let U� = fA1; : : : ; An; Cg, where the vari-
ables A1; : : : ; An are the attributes and C is the class
variable. In the naive Bayes structure the class variable

2Formally there is a notion of minimality associated with this
definition, but we will ignore it in this paper (see (Pearl 1988)).



www.manaraa.com

is the root, i.e., �C = ;, and the only parent for each
attribute is the class variable, i.e., �Ai = fCg, for all
1 � i � n. Using (1) we have that Pr(A1; : : : ; An; C) =
Pr(C) �Qni=1 Pr(AijC). From the definition of conditional
probability we get that Pr(CjA1; : : : ; An) = � � Pr(C) �Qni=1 Pr(AijC), where � is a normalization constant. This
is the definition of naive Bayes commonly found in the
literature (Langley, Iba, & Thompson 1992).

The problem of learning a Bayesian network can be stated
as follows. Given a training set D = fu1; : : : ; uNg of in-
stances of U, find a network B that best matches D. The
common approach to this problem is to introduce a scor-
ing function that evaluates each network with respect to the
training data, and then to search for the best network. In gen-
eral, this optimization problem is intractable, yet for certain
restricted classes of networks there are efficient algorithms
requiring polynomial time (in the number of variables in
the network). We will indeed take advantage of these effi-
cient algorithms in Section 4 where we propose a particular
extension to naive Bayes. We start by examining the com-
ponents of the scoring function that we will use throughout
the paper.

Let B = hG;�i be a Bayesian network, and let D =fu1; : : : ; uNg (where each ui assigns values to all the vari-
ables in U) be a training set. The log-likelihood of B givenD is defined as

LL(BjD) = NXi=1

log(PrB (ui)): (2)
This term measures the likelihood that the data D was gen-
erated from the model B (namely the candidate Bayesian
network) when we assume that the instances were indepen-
dently sampled. The higher this value is, the closer B is
to modeling the probability distribution in the data D. LetP̂D(�) be the measure defined by frequencies of events inD.
Using (1) we can decompose the the log-likelihood accord-
ing to the structure of the network. After some algebraic
manipulations we can easily derive:LL(BjD) = NXi Xxi;�xi P̂D(xi;�xi) log(�xij�xi ) (3)
Now assume that the structure of the network is fixed. Stan-
dard arguments show that LL(BjD) is maximized when�xi j�xi = P̂D(xij�xi).
Lemma 2.2: Let B = hG;�i and B0 = hG;�0i such that�0xi j�xi = P̂D(xij�xi). Then LL(B0jD) � LL(BjD).
Thus, we have a closed form solution for the parameters that
maximize the log-likelihood for a given network structure.
This is crucial since instead of searching in the space of
Bayesian networks, we only need to search in the smaller
space of network structures, and then fill in the parameters
by computing the appropriate frequencies from the data.

The log-likelihood score, while very simple, is not suit-
able for learning the structure of the network, since it tends
to favor complete graph structures (in which every vari-
able is connected to every other variable). This is highly

undesirable since such networks do not provide any useful
representation of the independences in the learned distribu-
tions. Moreover, the number of parameters in the complete
model is exponential. Most of these parameters will have
extremely high variance and will lead to poor predictions.
This phenomena is called overfitting, since the learned pa-
rameters match the training data, but have poor performance
on test data.

The two main scoring functions commonly used to learn
Bayesian networks complement the log-likelihood score
with additional terms to address this problem. These are the
Bayesian scoring function (Heckerman, Geiger, & Chicker-
ing 1995), and the one based on minimal description length
(MDL) (Lam & Bacchus 1994). In this paper we con-
centrate on MDL deferring the discussion on the Bayesian
scoring function for the full paper.3

The motivation underlying the MDL method is to find a
compact encoding of the training set D. We do not repro-
duce the derivation of the the MDL scoring function here,
but merely state it. The interested reader should consult
(Friedman & Goldszmidt 1996; Lam & Bacchus 1994). The
MDL score of a network B givenD, written MDL(BjD) is

MDL(BjD) = 1
2

logN jBj � LL(BjD) (4)
where jBj is the number of parameters in the network. The
first term simply counts how many bits we need to encode
the specific network B, where we store 1=2 � logN bits for
each parameter in �. The second term measures how many
bits are needed for the encoded representation of D. Mini-
mizing the MDL score involves tradeoffs between these two
factors. Thus, the MDL score of a larger network might be
worse (larger) than that of a smaller network, even though
the former might match the data better. In practice, the
MDL score regulates the number of parameters learned and
helps avoid overfitting of the training data. Note that the
first term does not depend on the actual parameters in B, but
only on the graph structure. Thus, for a fixed the network
structure, we minimize the MDL score by maximizing the
LL score using Lemma 2.2.

It is important to note that learning based on the MDL
score is asymptotically correct: with probability 1 the
learned distribution converges to the underlying distribu-
tion as the number of samples increases (Heckerman 1995).

Regarding the search process, in this paper we will rely
on a greedy strategy for the obvious computational reasons.
This procedure starts with the empty network and succes-
sively applies local operations that maximally improve the
score and until a local minima is found. The operations ap-
plied by the search procedure are: arc addition, arc deletion
and arc reversal. In the full paper we describe results using
other search methods (although the methods we examined
so far did not lead to significant improvements.)

3 Bayesian Networks as Classifiers

3There are some well-known connections between these two
proposals (Heckerman 1995).



www.manaraa.com

19162213 9 4 6 1514 2 11 1 121018 7 1720 8 21 3 5

0.1

0.2

0.3

0.4

Error

Figure 2: Error curves comparing unsupervised Bayesian
networks (solid line) to naive Bayes (dashed line). The hor-
izontal axis lists the datasets, which are sorted so that the
curves cross only once. The vertical axis measures fraction
of test instances that were misclassified (i.e., prediction er-
rors). Thus, the smaller the value, the better the accuracy.
Each data point is annotated by a 90% confidence interval.

Using the methods just described we can induce a Bayesian
network from the data and then use the resulting model as a
classifier. The learned network represents an approximation
to the probability distribution governing the domain (given
the assumption that the instances are independently sampled
form a single distribution). Given enough samples, this will
be a close approximation Thus, we can use this network
to compute the probability of C given the values of the
attributes. The predicted class c, given a set of attributesa1; : : : ; an is simply the class that attains the maximum
posterior PB(cja1; : : : ; an), where PB is the probability
distribution represented by the Bayesian network B.

It is important to note that this procedure is unsupervised
in the sense that the learning procedure does not distinguish
the class variable from other attributes. Thus, we do not
inform the procedure that the evaluation of the learned net-
work will be done by measuring the predictive accuracy
with respect to the class variable.

From the outset there is an obvious problem. Learning
unrestricted Bayesian networks is an intractable problem.
Even though in practice we resort to greedy heuristic search,
this procedure is often expensive. In particular, it is more
expensive than learning the naive Bayesian classifier which
can be done in linear time.

Still, we may be willing to invest the extra effort re-
quired in learning a (unrestricted) Bayesian network if the
prediction accuracy of the resulting classifier outperforms
that of the naive Bayesian classifier. As our first experi-
ment shows, Figure 2, this is not always the case. In this
experiment we compared the predictive accuracy of classifi-
cation using Bayesian networks learned in an unsupervised
fashion, versus that of the naive Bayesian classifier. We
run this experiment on 22 datasets, 20 of which are from the
U. C. Irvine repository (Murphy & Aha 1995). Appendix A
describes in detail the experimental setup, evaluation meth-

ods, and results (Table 1).
As can be seen from Figure 2 the classifier based on unsu-

pervised networks performed significantly better than naive
Bayes on 6 datasets, and performed significantly worse on 6
datasets. A quick examination of the datasets revels that all
the datasets where unsupervised networks performed poorly
contain more than 15 attributes.

It is interesting to examine the two datasets where the un-
supervised networks performed worst (compared to naive
Bayes): “soybean-large” (with 35 attributes) and “satim-
age” (with 36 attributes). For both these datasets, the size of
the class’ Markov blanket in the networks is rather small—
less than 5 attributes. The relevance of this is that pre-
diction using a Bayesian network examines only the values
of attributes in the class variable’s Markov blanket.4 The
fact that for both these datasets the Markov blanket of the
class variable is so small indicates that for the MDL metric,
the “cost” (in terms of additional parameters) of enlarging
the Markov blanket is not worth the tradeoff in overall ac-
curacy. Moreover, we note that in all of these experiments
the networks found by the unsupervised learning routine
had better MDL score than the naive Bayes network. This
suggest that the root of the problem is the scoring metric—
a network with a better score is not necessarily a better
classifier.

To understand this problem in detail we re-examine the
MDL score. Recall that the likelihood term in (4) is the one
that measures the quality of the learned model. Also recall
thatD = fu1; : : : ; uNg is the training set. In a classification
task each ui is a tuple of the form hai1; : : : ; ain; cii that
assigns values to the attributes A1; : : : ; An and to the class
variable C. Using the chain rule we can rewrite the log-
likelihood function (2) as:

LL(BjD) = NXi=1

logPB(cijai1; : : : ; ain) +NXi=1

logPB(ai1; : : : ; ain) (5)

The first term in this equation measures how well B esti-
mates the probability of the class given the attributes. The
second term measures how well B estimates the joint dis-
tribution of the attributes. Since the classification is deter-
mined by PB(CjA1; : : : ; An) only the first term is related
to the score of the network as a classifier (i.e., its prediction
accuracy). Unfortunately, this term is dominated by the sec-
ond term when there are many attributes. As n grows larger,
the probability of each particular assignment to A1; : : : ; An
becomes smaller, since the number of possible assignments
grows exponentially in n. Thus, we expect the terms of
the form PB(A1; : : : ; An) to yield smaller values which in
turn will increase the value of the log function. However,

4More precisely, for a fixed network structure the Markov blan-
ket of a variable X (Pearl 1988) consists ofX’s parents,X’s chil-
dren, and parents of X’s children in G. This set has the property
that conditioned on X’s Markov blanket, X is independent of all
other variables in the network.



www.manaraa.com

��� ������������ ������




 �������� ZZZSSSSSSPPPP hhhhhhhh BBB 



PPPPPPPPbbbbb���Pregnant InsulinAge DPFC GlucoseMass
Figure 3: A TAN model learned for the dataset “pima”.

at the same time, the conditional probability of the class
will remain more of less the same. This implies that a rela-
tively big error in the first term will not reflect in the MDL
score. Thus, as indicated by our experimental results, using
a non-specialized scoring metric for learning an unrestricted
Bayesian network may result in a poor classifier when there
are many attributes.5

A straightforward approach to dealing with this problem
would be to specialize the scoring metric (MDL in this case)
for the classification task. We can easily do so by restricting
the log-likelihood to the first term of (5). Formally, let the
conditional log-likelihood of a Bayesian network B given
dataset D be CLL(BjD) =PNi=1 logPB(CijAi1; : : : ; Ain).
A similar modification to Bayesian scoring metric in (Heck-
erman, Geiger, & Chickering 1995) is equally easy to define.
The problem with applying these conditional scoring met-
rics in practice is that they do not decompose over the struc-
ture of the network, i.e., we do not have an analogue of (3).
As a consequence it is no longer true that setting the param-
eters �xij�xi = P̂D(xij�xi)maximizes the score for a fixed
network structure.6 We do not know, at this stage, whether
there is a computational effective procedure to find the pa-
rameter values that maximize this type of conditional score.
In fact, as reported by Geiger (1992), previous attempts to
defining such conditional scores resulted in unrealistic and
sometimes contradictory assumptions.

4 Learning Restricted Networks for
Classifiers

In light of this discussion we examine a different ap-
proach. We limit our attention to a class of network struc-
tures that are based on the naive Bayes structure. As in
naive Bayes, we require that the class variable be a parent
of every attribute. This ensures that, in the learned network,
the probability P (CjA1; : : : ; An) will take every attribute
into account, rather than a shallow set of neighboring nodes.

5In the full paper we show that the same problem occur in the
Bayesian scoring metric.

6We remark that decomposition still holds for a restricted class
of structures—essentially these where C does not have any chil-
dren. However, these structures are usually not useful for classifi-
cation.

In order to improve the performance of a classifier based on
naive Bayes we propose to augment the naive Bayes struc-
ture with “correlation” edges among the attributes. We call
these structures augmented naive Bayes.

In an the augmented structure an edge from Ai to Aj im-
plies that the two attributes are no longer independent given
the class variable. In this case the influence ofAi on the as-
sessment of class variable also depends on the value of Aj .
Thus, in Figure 3, the influence of the attribute “Glucose”
on the class C depends on the value of “Insulin”, while in
naive Bayes the influence of each on the class variable is
independent of other’s. Thus, a value of “Glucose” that is
surprising (i.e., P (gjc) is low), may be unsurprising if the
value of its correlated attribute, “Insulin,” is also unlikely
(i.e., P (gjc; i) is high). In this situation, the naive Bayesian
classifier will over-penalize the probability of the class vari-
able (by considering two unlikely observations), while the
network in Figure 3 will not.

Adding the best augment naive Bayes structure is an in-
tractable problem. To see this, note this essentially involves
learning a network structure over the attribute set. How-
ever, by imposing restrictions on the form of the allowed
interactions, we can learn the correlations quite efficiently.

A tree-augmented naive Bayes (TAN) model, is a
Bayesian network where �C = ;, and �Ai contains C
and at most one other attribute. Thus, each attribute can
have one correlation edge pointing to it. As we now show,
we can exploit this restriction on the number of correla-
tion edges to learn TAN models efficiently. This class of
models was previously proposed by Geiger (1992), using
a well-known method by Chow and Liu (1968), for learn-
ing tree-like Bayesian networks (see also (Pearl 1988, pp.
387–390)).7

We start by reviewing Chow and Liu’s result on learning
trees. A directed acyclic graph is a tree if �Xi contains
exactly one parent for all Xi, except for one variable that
has no parents (this variable is referred to as the root). Chow
and Liu show that there is a simple procedure that constructs
the maximal log-probability tree. Let n be the number of
random variables andN be the number of training instances.
Then

Theorem 4.1: (Chow & Lui 1968) There is a procedure of
time complexityO(n2 �N ), that constructs the tree structureBT that maximizes LL(BT jD).

The procedure of Chow and Liu can be summarized as
follows.

1. Compute the mutual information I(Xi;Xj) =Pxi;xj P̂D(xi; xj) log P̂D(xi;xj)P̂D(xi)P̂D(xj) between each pair

of variables, i 6= j.
2. Build a complete undirected graph in which the vertices

are the variables in U. Annotate the weight of an edge
connecting Xi to Xj by I(Xi;Xj).

3. Build a maximum weighted spanning tree of this graph
(Cormen, Leiserson, & Rivest 1990).
7These structures are called “Bayesian conditional trees” by

Geiger.



www.manaraa.com

1 9 4 6 2 11152219 7 1810 8 211714 3 1316 5 1220

0.1

0.2

0.3

0.4

Error

Figure 4: Error curves comparing smoothed TAN (solid line)
to naive Bayes (dashed line).

3 21 5 1 7 6 8 20191815 9 17 2 10221611141312 4

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Error

Figure 5: Error curves comparing smoothed TAN (solid line)
to C4.5 (dashed line).

4. Transform the resulting undirected tree to a directed one
by choosing a root variable and setting the direction of all
edges to be outward from it. (The choice of root variable
does not change the log-likelihood of the network.)

The first step has complexity of O(n2 �N ) and the third step
has complexity of O(n2 logn). Since we usually have thatN > logn, we get the resulting complexity.

This result can be adapted to learn the maximum likeli-
hood TAN structure.

Theorem 4.2: (Geiger 1992) There is a procedure of time
complexity O(n2 �N ) that constructs the TAN structure BT
that maximize LL(BT jD).

The procedure is very similar to the procedure de-
scribed above when applied to the attributes A1; : : : ; An.
The only change is in the choice of weights. In-
stead of taking I(Ai;Aj), we take the condi-
tional mutual information given C, I(Ai;AjjC) =Pai;aj ;c P̂D(ai; aj; c) log P̂D(ai;aj jc)P̂D(ai jc)P̂D(aj jc) . Roughly

speaking, this measures the gain in log-likelihood of addingAi as a parent of Aj when C is already a parent.
There is one more consideration. To learn the parameters

in the network we estimate conditional frequencies of the
form P̂D(Xj�X ). This is done by partitioning the train-
ing data according to the possible values of �X and then
computing the frequency of X in each partition. A prob-
lem surfaces when some of these partitions contain very
few instances. In these small partitions our estimate of the
conditional probability is unreliable. This problem is not
serious for the naive Bayes classifier since it partitions the
data according to the class variable, and usually all values of
the class variables are adequately represented in the training
data. In TAN models however, for each attribute we asses
the conditional probability given the class variable and an-
other attribute. This means that the number of partitions is
at least twice as large. Thus, it is not surprising to encounter
unreliable estimates, especially in small datasets.

To deal with this problem we introduce a smoothing op-
eration on the parameters learned in TAN models. This
operation takes every estimated parameter �xj�x and bi-
ases it toward the observed marginal frequency of X,P̂D(x). Formally, we let the new parameter �s(xj�x) =� � P̂D(xj�x) + (1 � �)P̂D(x), taking � = N�P̂D (�x)N�P̂D(�x)+s ,

where s is the smoothing parameter, which is usually quite
small (in all the experiments we choose s = 5).8 It is easy
to see that this operation biases the learned parameters in a
manner that depends on our confidence level as expressed
by s: the more instances we have in the partition from which
we compute the parameter, the less bias is applied. If the
number of instances that with a particular parents’ value as-
signment is significant, than the bias essentially disappears.
On the other hand, if the number of instances with the a
particular parents’ value assignment is small, then the bias
dominates. We note that this operation is performed after
the structure of the TAN model are determined. Thus, the
smoothed model has exactly the same qualitative structure
as the original model, but with different numerical param-
eters. In our experiments comparing the prediction error
of smoothed TAN to that of unsmoothed TAN, we observed
that smoothed TAN performs at least as well as TAN and oc-
casionally significantly outperforms TAN (see for example
the results for “soybean-large”, “segment”, and “lymphog-
raphy” in Table 1). From now on we will assume that the
version of TAN uses the smoothing operator unless noted
otherwise.

Figure 4 compares the prediction error of the TAN classi-
fier to that of naive Bayes. As can be seen, the performance
of the TAN classifier dominates that of naive Bayes.9 This
result supports our hypothesis that by relaxing the strong
independence assumptions made by naive Bayes we can
indeed learn better classifiers.

8In statistical terms, we are essentially applying a Dirichlet
prior on �Xj�X with mean expected value P̂D(X) and equivalent
sample size s. We note that this use of Dirichlet priors is related
to the class of Dirichlet priors described in (Heckerman, Geiger,
& Chickering 1995).

9In our experiments we also tried smoothed version of naive
Bayes. This did not lead to significant improvement over the
unsmoothed naive Bayes.



www.manaraa.com

Finally, we also compared TAN to C4.5 (Quinlan 1993),
a state of the art decision-tree learning system, and to the
selective naive Bayesian classifier (Langley & Sage 1994;
John, Kohavi, & Pfleger 1995). The later approach searches
for the subset of attributes over which naive Bayes has
the best performance. The results displayed in Figure 5
and Table 1, show that TAN is quite competitive with both
approaches and can lead to big improvements in many cases.

5 Concluding Remarks
This paper makes two important contributions. The first
one is the analysis of unsupervised learning of Bayesian
networks for classification tasks. We show that the scoring
metrics used in learning unsupervised Bayesian networks
do not necessarily optimize the performance of the learned
networks in classification. Our analysis suggests a possible
class of scoring metrics that are suited for this task. These
metrics appear to be computationally intractable. We plan
to explore effective approaches to learning with approxi-
mations of these scores. The second contribution is the
experimental validation of tree augmented naive Bayesian
classifiers, TAN. This approach was introduced by Geiger
(1992), yet was not extensively tested and as a consequence
has received little recognition in the machine learning com-
munity. This classification method has attractive computa-
tional properties,while at the same time, as our experimental
results show, it performs competitively with reported state
of the art classifiers.

In spite of these advantages, it is clear that in some sit-
uations, it would be useful to model correlations among
attributes that cannot be captured by a tree structure. This
will be significant when there is a sufficient number of train-
ing instances to robustly estimate higher-order conditional
probabilities. Thus, it is interesting to examine the problem
of learning (unrestricted) augmented naive Bayes networks.
In an initial experiment we attempted to learn such networks
using the MDL score, where we restricted the search pro-
cedure to examine only networks that contained the naive
Bayes backbone. The results were somewhat disappoint-
ing, since the MDL score was reluctant to add more than a
few correlation arcs to the naive Bayes backbone. This is,
again, a consequence of the fact that the scoring metric is not
geared for classification. An alternative approach might use
a cross-validation scheme to evaluate each candidate while
searching for the best correlation edges. Such a procedure,
however, is computationally expensive.

We are certainly not the first to try and improve naive
Bayes by adding correlations among attributes. For ex-
ample, Pazzani (1995) suggests a procedure that replaces,
in a greedy manner, pairs of attributes Ai; Aj, with a new
attribute that represents the cross-product of Ai and Aj.
This processes ensures that paired attributes influence the
class variable in a correlated manner. It is easy to see that
the resulting classifier is equivalent to an augmented naive
Bayes network where the attributes in each “cluster” are
fully interconnected. Note that including many attributes in
a single cluster may result in overfitting problems. On the
other hand, attributes in different clusters remain (condition-

ally) independent of each other. This shortcoming does not
occur in TAN classifiers. Another example is the work by
Provan and Singh (1995), in which a wrapper-based feature
subset selection is applied to an unsupervised Bayesian net-
work learning routine. This procedure is computationally
intensive (it involves repeated calls to a Bayesian network
learning procedure) and the reported results indicate only a
slight improvement over the selective naive Bayesian clas-
sifier.

The attractiveness of the tree-augmented naive Bayesian
classifier is that it embodies a good tradeoff between the
quality of the approximation of correlations among at-
tributes, and the computational complexity in the learning
stage. Moreover, the learning procedure is guaranteed to
find the optimal TAN structure. As our experimental results
show this procedure performs well in practice. Therefore
we propose TAN as a worthwhile tool for the machine learn-
ing community.

Acknowledgements
The authors are grateful to Denise Draper, Ken Fertig, Dan
Geiger, Joe Halpern, Ronny Kohavi, Pat Langley and Judea
Pearl for comments on a previous draft of this paper and
useful discussions relating to this work. We thank Ronny
Kohavi for technical help with the MLC++ library. Parts of
this work were done while the first author was at Rockwell
Science Center. The first author was also supported in part
by an IBM Graduate fellowship and NSF Grant IRI-95-
03109.

A Experimental Methodology and Results
We run our experiments on the 22 datasets listed in Table 1.
All of the datasets are from the U. C. Irvine repository
(Murphy & Aha 1995), with the exception of “mofn-3-7-
10” and “corral”. These two artificial datasets were used for
the evaluation of feature subset selection methods by (John,
Kohavi, & Pfleger 1995). All these datasets are accessible
at the MLC++ ftp site.

The accuracy of each classifier is based on the percentage
of successful predictions on the test sets of each dataset. We
estimate the prediction accuracy for each classifier as well
as the variance of this accuracy using the MLC++ system
(Kohavi et al. 1994). Accuracy was evaluated using the
holdout method for the larger datasets, and using 5-fold
cross validation (using the methods described in (Kohavi
1995)) for the smaller ones. Since we do not deal, at the
current time, with missing data we had removed instances
with missing values from the datasets. Currently we also do
not handle continuous attributes. Instead, in each invoca-
tion of the learning routine, the dataset was pre-discretized
using a variant of the method of (Fayyad & Irani 1993)
using only the training data, in the manner described in
(Dougherty, Kohavi, & Sahami 1995). These preprocess-
ing stages where carried out by the MLC++ system. We
note that experiments with the various learning procedures
were carried out on exactly the same training sets and evalu-
ated on the same test sets. In particular, the cross-validation
folds where the same for all the experiments on each dataset.



www.manaraa.com

Table 1: Experimental results
Dataset # Attributes # Instances Accuracy

Train Test| NBC Unsup TAN TANs C4.5 SNBC
1 australian 14 690 CV-5 86.23+-1.10 86.23+-1.76 81.30+-1.06 84.20+-1.24 85.65+-1.82 86.67+-1.81
2 breast 10 683 CV-5 97.36+-0.50 96.92+-0.63 95.75+-1.25 96.92+-0.67 94.73+-0.59 96.19+-0.63
3 chess 36 2130 1066 87.15+-1.03 95.59+-0.63 92.40+-0.81 92.31+-0.82 99.53+-0.21 94.28+-0.71
4 cleve 13 296 CV-5 82.76+-1.27 81.39+-1.82 79.06+-0.65 81.76+-0.33 73.31+-0.63 78.06+-2.41
5 corral 6 128 CV-5 85.88+-3.25 97.60+-2.40 95.32+-2.26 96.06+-2.51 97.69+-2.31 83.57+-3.15
6 crx 15 653 CV-5 86.22+-1.14 85.60+-0.17 83.77+-1.34 85.76+-1.16 86.22+-0.58 85.92+-1.08
7 diabetes 8 768 CV-5 74.48+-0.89 75.39+-0.29 75.13+-0.98 75.52+-1.11 76.04+-0.85 76.04+-0.83
8 flare 10 1066 CV-5 79.46+-1.11 82.74+-1.90 82.74+-1.60 82.27+-1.86 82.55+-1.75 83.40+-1.67
9 german 20 1000 CV-5 74.70+-1.33 72.30+-1.57 72.20+-1.54 73.10+-1.54 72.20+-1.23 73.70+-2.02

10 heart 13 270 CV-5 81.48+-3.26 82.22+-2.46 82.96+-2.51 83.33+-2.48 81.11+-3.77 81.85+-2.83
11 hepatitis 19 80 CV-5 91.25+-1.53 91.25+-4.68 85.00+-2.50 91.25+-2.50 86.25+-4.15 90.00+-4.24
12 letter 16 15000 5000 74.96+-0.61 75.02+-0.61 83.44+-0.53 85.86+-0.49 77.70+-0.59 75.36+-0.61
13 lymphography 18 148 CV-5 79.72+-1.10 75.03+-1.58 66.87+-3.37 85.03+-3.09 77.03+-1.21 77.72+-2.46
14 mofn-3-7-10 10 300 1024 86.43+-1.07 85.94+-1.09 91.70+-0.86 91.11+-0.89 85.55+-1.10 87.50+-1.03
15 pima 8 768 CV-5 75.51+-1.63 75.00+-1.22 75.13+-1.36 75.52+-1.27 75.13+-1.52 74.86+-2.61
16 satimage 36 4435 2000 81.75+-0.86 59.20+-1.10 77.55+-0.93 87.20+-0.75 83.15+-0.84 82.05+-0.86
17 segment 19 1540 770 91.17+-1.02 93.51+-0.89 85.32+-1.28 95.58+-0.74 93.64+-0.88 93.25+-0.90
18 shuttle-small 9 3866 1934 98.34+-0.29 99.17+-0.21 98.86+-0.24 99.53+-0.15 99.17+-0.21 99.28+-0.19
19 soybean-large 35 562 CV-5 91.29+-0.98 58.54+-4.84 58.17+-1.43 92.17+-1.02 92.00+-1.11 92.89+-1.01
20 vehicle 18 846 CV-5 58.28+-1.79 61.00+-2.02 67.86+-2.92 69.63+-2.11 69.74+-1.52 61.36+-2.33
21 vote 16 435 CV-5 90.34+-0.86 94.94+-0.46 89.20+-1.61 93.56+-0.28 95.63+-0.43 94.71+-0.59
22 waveform-21 21 300 4700 77.89+-0.61 69.45+-0.67 75.38+-0.63 78.38+-0.60 74.70+-0.63 76.53+-0.62

Finally, in Table 1 we summarize the accuracies of the six
learning procedures we discussed in this paper: NBC–the
naive Bayesian classifier; Unsup–unsupervised Bayesian
networks learned using the MDL score; TAN—TAN net-
works learned according to Theorem 4.2; TANs—smoothed
TAN networks; C4.5–the decision-tree classifier of (Quin-
lan 1993); SNBC—the selective naive Bayesian classifier, a
wrapper-based feature selection applied to naive Bayes, us-
ing the implementation of (John, Kohavi, & Pfleger 1995).

References

Chow, C. K., and Lui, C. N. 1968. Approximating dis-
crete probability distributions with dependence trees. IEEE
Trans. on Info. Theory 14:462–467.

Cormen, T. H.; Leiserson, C. E.; and Rivest, R. L. 1990.
Introduction to Algorithms. MIT Press.

Dougherty, J.; Kohavi, R.; and Sahami, M. 1995. Super-
vised and unsupervised discretization of continuous fea-
tures. In ML ’95.

Fayyad, U. M., and Irani, K. B. 1993. Multi-interval
discretization of continuous-valued attributes for classifi-
cation learning. In IJCAI ’93, 1022–1027.

Friedman, N., and Goldszmidt, M. 1996. Discretization of
continuous attributes while learning Bayesian networks.
In ML ’96.

Geiger, D. 1992. An entropy-based learning algorithm of
Bayesian conditional trees. In UAI ’92. 92–97.

Heckerman, D.; Geiger, D.; and Chickering, D. M. 1995.
Learning Bayesian networks: The combination of knowl-
ege and statistical data. Machine Learning 20:197–243.

Heckerman, D. 1995. A tutorial on learning Bayesian
networks. Technical Report MSR-TR-95-06, Microsoft
Research.

John, G.; Kohavi, R.; and Pfleger, K. 1995. Irrelevant
features and the subset selection problem. In ML ’94.
121–129.
Kohavi, R.; John, G.; Long, R.; Manley, D.; and Pfleger,
K. 1994. MLC++: A machine learning library in C++. In
Tools with Artificial Intelligence. 740–743.
Kohavi, R. 1995. A study of cross-validation and bootstrap
for accuracy estimation and model selection. In IJCAI ’95.
1137–1143.
Lam, W., and Bacchus, F. 1994. Learning Bayesian be-
lief networks. An approach based on the MDL principle.
Computational Intelligence 10:269–293.
Langley, P., and Sage, S. 1994. Induction of selective
Bayesian classifiers. In UAI ’94. 399–406.
Langley, P.; Iba, W.; and Thompson, K. 1992. An analysis
of bayesian classifiers. In AAAI ’90. 223–228.
Murphy, P. M., and Aha, D. W. 1995. UCI repository of
machine learning databases. http://www.ics.uci.
edu/˜mlearn/MLRepository.html.
Pazzani, M. J. 1995. Searching for dependencies in
Bayesian classifiers. In Proc. of the 5’th Int. Workshop
on Artificial Intelligence and Statistics.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent
Systems. Morgan Kaufmann.
Quinlan, J. R. 1993. C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann.
Singh, M., and Provan, G. M. 1995. A comparison
of induction algorithms for selective and non-selective
bayesian classifiers. In ML ’95.


